Seminario di Logica e Filosofia della Scienza Anno 2019


venerdì 20 dicembre 2019, ore 11:00
DILEF - via della Pergola, 60, Firenze
sala Altana

Paolo Mancosu
(UC Berkeley)

“Infelice Mylord! Qual è il motivo di tali vostr’incomodi? Forse la compagnia che frequentate?”: Alcuni risultati recenti sul neologicismo.

In questa presentazione fornirò una panoramica delle mie recenti ricerche, alcune già pubblicate ed altre ancora inedite, sul neologicismo ed in particolare sulle tematiche legate alle obbiezioni di buona e cattiva compagnia.


venerdì 13 dicembre 2019, ore 11:00
DILEF-via della Pergola 60, Firenze
Sala Altana 


Caterina Sisti
(Scuola Normale Superiore, Pisa)

Ramsey's conditionals


venerdì 29 novembre 2019, ore 11:00
plesso di via G. Capponi, 9-Firenze
aula 9

Peter Schuster
(Università di Verona)

On the Computational Content of Forms of Zorn's Lemma


venerdì 22 novembre 2019, ore 11:00
DILEF-via della Pergola 60, Firenze
Sala Altana

Lavinia Picollo
(University College, London)

A Theory of Untyped Structured Propositions

I put forward a semantic theory of untyped propositions satisfying the equivalence schema. Propositions are well-founded (in a sense to be specified) but are also allowed to exhibit a non-vicious kind of self-reference. Moreover, they satisfy a fine-grained identity criterion closed under certain (but not all) logical transformations that preserves many shared intuitions.


venerdì 11 ottobre 2019, ore 11:00
DILEF-via della Pergola 60, Firenze
Sala Altana

Olga Pombo
(University of Lisbon)

Poincaré’s conception of intuition

Tarja Knuuttila
(University of Vienna)

Idealization and de-idealization in economics


Martedì 24 settembre 2019, ore 16:30
DILEF-via della Pergola 60 - Firenze
Sala Altana

Tarja Knuuttila
(Universität Wien - Institut für Philosophie)
(Visiting Professor presso il DILEF)

Modeling and representation: An artefactual approach


Venerdì 24 maggio 2019, ore 11:00
DILEF-via della Pergola 60, Firenze
Sala Altana

Cosimo Perini Brogi
(Università di Genova)
Categorical Semantics for Intuitionistic Belief

In 2014, Artemov and Protopopescu proposed an analysis of constructive epistemic reasoning based on the BHK semantics which lead to two axiomatic calculi involving co-reflection (A --> Box A) and "factivity of knowledge" (Box A --> neg(neg A)). In this framework then Krupski and Yatmanov provided an appropriate sequent calculus for the logic of intuitionistic knowledge (IEL). In this talk, I will introduce a natural deduction calculus for the logic of intuitionistic belief (IEL^{-}), and, by considering an "extended" Curry-Howard correspondence for that system, I will propose a semantics for IEL^{-}-derivations based on bicartesian closed categories equipped with pointed endofunctors. Some remarks about similar results for intuitionistic knowledge are proposed and some open problems are also discussed.



venerdì 3 maggio 2019, ore 10:30-13:00
DILEF-via della Pergola 60, Firenze
Sala Altana

Thomas Schindler
(University of Amsterdam)

A type-free theory of classes

Abstract: In this talk, I present a type-free theory of classes, i.e. a theory of classes that may contain themselves. In particular, the theory admits a class of all classes. The theory is loosely based on the Russell-Gödel idea that every concept has a range of significance, i.e. a domain of objects to which the concept can be applied. Very roughly, the idea is that every concept (even paradoxical ones) determines a class, but that comprehension holds only for those objects in the range of significance of a class. I've published the basics of this theory in my paper "Classes, why and how?" (Philosophical Studies, 2019). This talk presents contents from this paper together with some new material. In particular, I'll present some new axioms that increase the deductive strength of the theory.


Timo Beringer
(MCMP Munich)

Non-well-founded definitions

Abstract: In this talk I will have a look at the semantic paradoxes from the perspective of recursive definitions. In this way paradoxes are associated with unsolvable recursion equations and arise when the recursive process that is about to determine the extension of a concept (e.g. that of a true sentence) doesn’t  terminate but runs endlessly along some ill-founded relation. Conceiving a recursion equation as an ordered pair consiting of a directed graph and a recursion operator, I will indicate how results and questions from my paper with
Thomas Schindler “A graph-theoretic analysis of the semantic paradoxes” can be formulated  in terms of solvability of recursion equations. Moreover, I will discuss how progress toward a better structural understanding of paradoxes can be made by investigating how recursion equations behave under some operations of simplification. 



venerdì 12 aprile 2019, ore 11:00
piazza Brunelleschi 4, aula "Apollo"

Fabrizia Mealli
(DISIA, Università di Firenze)

Understanding Causation: A Statistician’s View

The potential outcome approach to causal inference will be introduced. This approach, known also as the Rubin Causal Model, views causal inference as a missing data framework embedded within a Bayesian model based approach. Causal models will be contrasted with associational models of statistical dependence.



venerdì 29 marzo 2019, ore 11:00
via Capponi 9, aula 8

(nell'ambito delle conferenze del Centro Linceo Interdisciplinare "Beniamino Segre")

Roberto Giuntini
(Università di Cagliari, Centro Linceo Interdisciplinare "Beniamino Segre")

{0,1} e [0,1]: dalla logica quantistica alla logica quantistica fuzzy

We investigate certain Brouwer-Zadeh lattices that serve as abstract counterparts of lattices of effects in Hilbert spaces under the spectral ordering. These algebras, called PBZ*-lattices, can also be seen as generalizations of orthomodular lattices and are remarkable for the collapse of three notions of “sharpness” that are distinct in general Brouwer-Zadeh lattices. We will finally present the structure theory of PBZ*-lattices and we provide an initial description of the lattice of PBZ*-varieties.



venerdì 22 marzo 2019, ore 11:00
via Capponi 9, aula 8

Erik Curiel
(Munich Center for Mathematical Philosophy, LMU München; Black Hole Initiative, Harvard University)

Schematizing the Observer and the Epistemic Content of Theories, or, Getting the Laboratory into the Theory.

I argue that, contrary to the standard view, one cannot understand the structure and nature of our knowledge in physics without an analysis of the way that observers (and, more generally, measuring instruments and experimental arrangements) are modeled in theory.  One upshot is that standard pictures of what a scientific theory can be are grossly inadequate.  In particular, standard formulations assume, with no argument ever given, that it is possible to make a clean separation between, on the one hand, one part of the  scientific knowledge a physical theory embodies, viz., that encoded in the pure mathematical formalism and, on the other, the remainder of that knowledge.  The remainder includes at a minimum what is encoded in the practice of modeling particular systems, of performing experiments, of bringing the results of theory and experiment into mutually fruitful contact---in sum, real application of the theory in actual scientific practice.  This assumption comes out most clearly in the picture of semantics that naturally accompanies the standard view of theories: semantics is fixed by ontology's shining City on the Hill, and all epistemology and methodology and other practical issues and considerations are segregated to the ghetto of the theory's pragmatics.  We should not assume such a clean separation is possible without an argument, and, indeed, I offer many arguments that strongly suggest such a separation is not feasible. 



venerdì 8 marzo 2019, ore 11:00
via Capponi 9, aula 8

Mario Piazza
(Scuola Normale Superiore, Pisa)

Verità parziali in logica classica

Il seminario propone un nuovo approccio proof-theoretic alla verità, al fine di catturare la nozione elusiva ma pervasiva di verità parziale: una proposizione classica che non è vera non necessariamente è completamente falsa. I valori di verità sono trattati come elementi dell'insieme dei razionali Q nell'intervallo [0,1] e decorano gli assiomi e le regole di un opportuno calcolo dei sequenti classico. Una morale filosofica è tratta.

Ultimo aggiornamento



I cookie di questo sito servono al suo corretto funzionamento e non raccolgono alcuna tua informazione personale. Se navighi su di esso accetti la loro presenza.  Maggiori informazioni