Salta gli elementi di navigazione
Home page > Eventi > Seminari > Seminario di Logica e Filosofia della Scienza

Seminario di Logica e Filosofia della Scienza


Seminario di Logica e Filosofia della Scienza

Sezione di Filosofia

Via Bolognese 52, aula 5

orario: 11.00-13.00
(salvo diversa comunicazione)




venerdì 31 marzo 2017

Gerhard Jaeger
(Universität Bern)

Operations and Sets: a Historical Perspective

Abstract: Starting from some developments in the early days of set theory, I will describe some concepts and approaches that lead to what is known today as operational set theory. In doing that I will try to look at some of these principles from a more modern perspective. The focus of this talk is more on general ideas than on technical results




venerdì 24 marzo 2017


Guglielmo Tamburrini
(Università di Napoli "Federico II")

Le macchine  autonome dell'IA: problemi etici ed epistemologici




venerdì 17 marzo 2017


Marcello D'Agostino
(Università di Milano)

An Informational View of Classical Logic




Venerdì 10 marzo 2017

Marko Malink                 and          Anubav Vasudevan
(New York University)                    (University of Chicago)

The Peripatetic Program in Categorical Logic: A Leibnizian Approach


Abstract: The ancient Greeks developed two competing systems of logic: Aristotle's categorical logic and Stoic propositional logic. Peripatetic logicians attempted to establish the priority of categorical over propositional logic. Stoic logicians rejected this Peripatetic program, pointing out that categorical logic relies on propositional modes of reasoning such as reductio ad absurdum. In the 17th century, the Peripatetic program was revived by Gottfried Wilhelm Leibniz. Following Leibniz, we develop a purely categorical calculus in which every proposition is of the form "Every A is B". We show that this calculus is strong enough to derive all the laws of classical propositional logic, including reductio ad absurdum. Moreover, we show that the propositional logic generated by the non-monotonic fragment of this categorical calculus is the relevance logic RMI.





Anno 2016


Anno 2015


Anno 2014


Anno 2013


ultimo aggiornamento: 27-Mar-2017
Unifi Home Page

Inizio pagina